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Inverse bremsstrahlung absorption in large radiation 
fields during binary collisions-Born approximation 
I. Elastic collisions 

G J PERT 
Department of Applied Physics, Hull University, Hull, UK 

MS received 7 December 19 /1 ,  in revised form 23 March 1972 

Abstract. The absorption of radiation by inverse bremsstrahlung absorption from a planar 
single mode monochromatic light beam is considered by nonrelativistic time-dependent 
perturbation theory, which is equivalent to the Born approximation. The results are of 
general validity and may be applied to any scattering system which is left unchanged by 
the collision. Comparison between the results obtained previously by different workers 
shows the relationship between the different models used to investigate this effect. 

1. Introduction 

For some time now there has been considerable interest in the possibility of plasma 
heating by lasers due to inverse bremsstrahlung. The theory of invc--,e bremsstrahlung 
absorption in a large radiation field has received some attention, and calculations have 
been carried out using both classical (Silin 1965, Babuel-Peyrissac 1970, Pert 1972) 
and quantum models (Bunkin and Federov 1966, Rand 1964). However, a detailed 
intercomparison is lacking. The classical theory calculations show good agreement 
within the limits of their approximations where they overlap. In the case of the quantum 
theory calculations the published results are not the same, even when taking into account 
the differences in the approximations made. 

In this paper we develop an expression for the absorption cross section from the 
Born approximation, identical to that obtained by Bunkin and Federov (1966). The 
calculation is nonrelativistic, so that the electron velocity v << c, the velocity of light, 
and is performed in the dipole approximation ; hence the classical electron oscillation 
amplitude e E / m o 2  << c/w, the wavelength of the light. The Born approximation implies 
the standard conditions on the electron velocity : 

where V(r) is the scattering potential at a distance r .  Using this expression the classical 
theory is developed as an approximation when the average electron energy gain per 
collision is much greater than a quantum of radiation. The results given by Bunkin 
and Federov have been rederived to correct a number of numerical errors and obtain 
better agreement with the calculations of Rand. 

As an appendix the general result is also obtained using Rand’s approach, which is 
more complicated, but closely related to classical methods (Dawson and Oberman 
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1962). In order to compare the results obtained by the various methods, abbreviations 
are used to denote the different papers, particularly with regard to equation numbers. 
Thus R Rand (1964), B Bunkin and Federov (1966) and P Pert (1972). 

2. The Born approximation for inverse bremsstrahlung 

The wavefunction for a free electron in a classical electromagnetic field of peak intensity 
E, angular frequency w and vector potential A can be written exactly : 

II/, = &exP[;{(P-$) .r-lb’ ( P - $ ) 2 ; } ] .  

We wish to consider the scattering of the electron with initial momentum p into a 
state p’ by a potential V(r) .  Under the usual conditions for the Born approximation we 
consider the potential as a perturbation introducing transitions from the state p to p‘ 
by time-dependent perturbation theory. Writing the wavefunction in the potential as 

N - 7  t )  = f a,(O$,(c t )  dP 

and using Schrodinger’s equation, we obtain 

where p is the initial state of the electron. 
The transition probability into the state p’ per unit time is thus 

In order to evaluate this term we expand the wavefunction in a Fourier series in time : 

Hence integrating and letting the upper limit of integration tend to infinity, we obtain 

The sum over Fourier components is performed using the Faltung theorem (Morse 
and Feshbach 1953, p 464) ; and, noting that the term is real, we obtain 

. (p -p‘) sin ot + not (8) 
ceE 

n 

This integral is simply the well known integral representation of the Bessel function J, 
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and is evaluated in terms of polar angles defined with respect to the polar axis along p 
and the (E ,p )  azimuthal plane, and the dimensionless constants 

where v is the classical initial velocity (= Ipl/m), to give 

- 1 sin 0, sin e cos $)6(c’ - E - n h o )  (10) 

This expression yields the probability of a transition from the state +,, to +,,, per 
0, being the polar angle of E, and (e, 4) the angular coordinates ofp’. 

unit time. To obtain the electron cross section for this process, ce, we note 

where r, the electron flux, is given by 

The total cross section for all electron collisions under these conditions is thus 

- 1 sin e, sin 0 cos 4 }  
where 

_ -  pr2 _ -  p 2  + nho. 
2m 2m 

This cross section represents the sum of the cross sections for the absorption of a 
discrete number of n photons, or emission if n is negative. The cross section for the 
absorption of just n photons is thus 

a: = 4n2h4 -!f- 1 dR 1 1 dr V(r) ex,( $(a-a l l ) .  r 

x AJ,2y(cos 8,(1- 1 cos 0) - A  sin Bo sin 0 COS 4} (14) 

where a and a’ are unit vectors in the directions of p and p‘. In calculations of brems- 
strahlung emission this is the quantity usually used, namely the electron collision cross 
section for the emission of radiation. In absorption, however, the quantity required is 
the absorption coefficient or photon absorption cross section a,, which is calculated 
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from the number ofphotons absorbed per cubic centimetre, npvo;, where p is the electron 
number density. Hence 

puna: 
cE2/8nhw 

on = 

- - 2m2vhwpn / dR 1 1 dr V ( r )  exp 
nh4E2c 

x RJ,2y{cos 0,(l -cos 0) - i .  sin 0, sin 8cos +}. (16) 
I t  will be noted that the result quoted without derivation by Bunkin and Federov 
(1966, equation (B3)) differs from this by a factor of n. The factor n was introduced in 
equation (15) to take into account the fact that n photons are absorbed in each electron 
collision. The results of Bunkin and Federov (1966) and of Nicholson-Florence (1971) 
whose calculations are based on equation (16), thus need modifying by a factor of n. 

Rand (1964) has also derived an equation analogous to (16) by a different approach. 
In appendix 1 equation (16) is also derived by Rand’s method. 

Equation (16) is of general validity provided the conditions specified earlier are 
obeyed. The potential V(r) may be used to describe any form of scattering, namely with 
ions, atoms or molecules, provided the state of the scatterer is left unchanged. 

3. Relation to the field-free collision cross section 

3.1. Raizer’s formula 

In the absence of a radiation field we may use equation (14) to obtain the well known 
expression for the differential cross section in the Born approximation : 

Thus, if i E 1 and [ << 1. then 

8nuhwpn 
E 2 c  on = 1 dR Z(e, $)J,Zy{cos 0,(l -cos @-sin Bo sin 0 cos (61. (18) 

In the important case of low field strengths, single photon absorption dominates. 
Expanding the Bessel function when 7 << 1 we obtain 

8nhuwp y 
a1 = ---( ?) / dR I ( &  4 )  {COS e,( 1 - cos e)  - sin Bo sin 8 cos + 1’. (19) 

E2c 

If I ( O , $ )  is independent of 4,  these integrals may be simply performed to yield 

8nvhwp n 
E c  3 

f f 1 = 7 -  y j I(d)(l -cos e)  sin 8 de  

4ne2u3p =--- 
3hcw3 ad 

where od is the momentum transfer cross section. This result may be immediately 
recognized as that obtained by Zel’dovich and Raizer (1965) using a quasi-classical 
semiquantitative argument which is valid for the same range of conditions as the Born 



Inverse bremsstrahlung absorption 1225 

approximation. Raizer’s formula is thus shown to be an exact result for low fields such 
that single quantum absorption only is important. 

Higher order terms can be calculated in a similar manner to the expansion (19). 
The results cannot, however, be expressed in simple terms as with equation (20). 

3.2. The classical theory 

A simple classical treatment of inverse bremsstrahlung absorption was developed in an 
earlier paper (Pert 1972) by considering the elastic scattering of electrons which possess 
both a thermal velocity U and an oscillating component u due to the field. 

In this model the energy absorption E per collision by an electron of constant thermal 
velocity varies during the cycle of the field. The probability per unit time of energy 
absorption in the range E -, E + &  for electrons of constant thermal velocity scattered 
into a given solid angle is then 

owl (g ,  w) 6 E  Cm’ w, = 
2n(dc/du) (du/dt) 

where the angle of scatter 8‘ and the solid angle element dn’ are determined by the total 
velocity 

w = u+u 

and 

E = mu(u - U‘). 

When E = n h o  and 6 e  = ho, we have 

wul(8’, w )  dR‘ 
nnu,(l -u’/u;)~’~ 

w, N 

(uo being the oscillation velocity amplitude), provided E >> ho (or n largekthe classical 
limit. 

We may compare this with the value obtained from equation (14) 

WB = v‘ l (@,  w)J,Z - - dR (: io) 
where dR is defined by the thermal velocity U alone. 

But 

dR a(cosB,$) w‘ w - _  = -  _ -  - 
d a  a(cos e ,  4‘)- v i  

Hence, using the asymptotic expansion of J, and averaging over the rapidly varying 
cos term, we obtain 

wuZ(B’, w) dZZ’ 
m u o  

WB 

The two terms WB and W, are approximately equal. The contribution from the 
Born approximation for n > nmax corresponding to the maximum classical energy 
absorption E,,, = nmaxhW can be shown to be small. The argument of the Bessel function 
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in the term, whose scattering corresponds to the classical absorption E,,, , is, from 
equation (23), nmax. Since 

terms of n > nmax do not contribute greatly to the absorption and their effects are 
included in the factor (1 - U ~ / U ~ ) ~ / ~  in the denominator of equation (22). The exact 
equivalence of the classical and quantum mechanical models, however, cannot be 
directly demonstrated in this manner. A more formal proof using Rand’s method, 
which may be derived from equation (16), is given in appendix 2. 

The correspondence between the classical and quantum theories can thus be clearly 
seen. A collision involving the absorption of n photons is thus equivalent classically to 
a collision at  the appropriate time during the oscillation of the electron. The equivalence 
of these two models allows an easy calculation of the absorption coefficient to be made 
in most cases of interest via the classical model. This is fortunate, as direct calculation 
from equation (16) is difficult due to the Bessel function term and can only be performed 
in the asymptotic limits or by numerical methods. 

4. Electron-atom collisions 

In the case of atomic collisions the matrix element can be calculated in the standard 
manner to yield the usual result in terms of the atomic form factor (Mott and Massey 
1965, p 459). In principle the absorption coefficient could be obtained from (16); 
however, this is a laborious procedure and it is probably simpler to use the classical 
approximation. 

5. Collisions with ions 

Bremsstrahlung absorption in electron-ion binary collisions at high fields has already 
been considered by Rand (1964) and by Bunkin and Federov (1966). Numerical 
calculations of the Bunkin-Federov results have been performed by Nicholson-Florence 
(1971). However, in addition to the error already noted there are several errors in the 
final asymptotic results in the paper by Bunkin and Federov (1966). It is therefore of 
value to repeat their calculations, particularly as there is then better agreement with 
those of Rand (1964). 

For the ions the potential V ( r )  = - Z e 2 / r  and 

5.1. Lowfields: y c 1 

We consider first the case of small fields, where y << 1. The Bessel functions may then 
be replaced by their small argument expansion. 
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Thus for single photon absorption we have 

8nZ2e4phw y 
m2v3E2cl (5)  (71 = 

where 

(29) 
{COS eo(i -Ax)-A sin e,(i -x2)ll2 cos i j ) 2  

dijdx 5 

1 {(A’ + 1)/21- XI’ 

~ ~ ( 3  cos2 eo - I )+ $A{ 1 + cos2 e, - ~ ~ ( 3  cos2 eo - 1)) In 

(30) 
Consider the case of slow electrons when t = l2  >> 1, for which 

16n 
I ,  =3 

and 

which differs from the value of Bunkin and Federov (B9) by a factor of 2 and is in exact 
agreement with that of Rand (R43). 

For the case when 5 << 1 we obtain the same values as given by Bunkin and Federov 
(BlO), which can be shown to be identical to those given by Rand (R31). 

The second-order term in the expansion of the first-order Bessel function is of the 
same order as the first-order term from the second-order Bessel function in the expansion 
of (13). Thus the total cross section for absorption is given by 

0 = 0 ,+0 ,  (33) 

and there is a similar term to include stimulated emission. I ,  is given by 

{COS e,( 1 - A COS 6) - 1 sin 8, sin 8 COS ij}4 
{(A’ + 11/21 -cos e 1 2  

(35) 

(36) 

Z 2  = Io2* d d  1; sin 0 de  

= 2n(z; cos4 eo + 3i21: cos2 e, sin2 eo + 8A4z; sin4 e,) 
and 

16 
3 

I :  = 216--A4+612-412-1)31n 

z: = - 2~~ + -12 + ~ ( 1 2  - 112 In 10 
3 (37) 

2A4 - 4A2/3 + 2 ( A 2  + l ) ( A 2  - 1)2 z: = A 2  - A3 In1 gl. 
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In the case of slow electrons we need only consider absorption, and hence 

1 6 ~ 2 '  I - _ _ _  

5 2 -  

independent of 0,. giving 

(38) 

The numerical factor for the second-order term differs from that given by Bunkin and 
Federov (B9) by the factor of n discussed earlier, but is in good agreement with Rand, 
who finds a factor & compared to 6 (R43). 

In many cases the electron distribution is isotropic and only the average value of 
I ,  over all Bo is required : i t  is easily shown that 

for all i,. 

fast electrons (i 2 1) at Bo = 0 :  
For comparison with Bunkin and Federov (B1 l), we calculate the cross section for 

n 2 Z 2 e E p c E 2  
{!+ 4(24)' k T S(203 In( 115)). 

2m2 h 3 
o'+2 = 

For higher order effects the formula given by Bunkin and Federov (B12) needs 
multiplying by the factor of n discussed earlier. 

5.2. Large f ields : 7 >> 1 

In the case of large fields we may expand the Bessel function by the large argument 
expansion, excluding the small range of solid angle where the argument is small, the 
value of the cross section being only weakly dependent on the cut-off provided n( >> 1 
or U , / U  >> 1. In this case it is easily shown that the cross section is given by 

21ny+ln(2n()+, 
24nwp Z2e3 

E3cn 
a+n(B, = 0) = 

and 

Thus at 8, = 7112 the absorption cross section for n photons when n< << 1-that is. 
fast electrons (but with U << U,)-is 
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and the total absorption cross section at  do  = n/2 is 

2 6 ~ Z 2 e 3 p o  
cE3n 0; = (1 +In y). (45)  

We may note from the discussion of the classical model that the cross section decreases 
rapidly when 

and hence we sum 0; to obtain the total cross section : 

In the case of slow electrons (A >> 1) it is easily shown that both cross sections at 0 
and 4 2  reduce to 

which may be summed as for fast electrons to give 

0 =  24?cWpZ2e3 I n (  e)}' do = 0 or n/2. 
E3c mho3  (49)  

This result may be directly compared with that obtained by the classical theory, 
noting, however, that, due to the quantum limit at low velocities, a finite electron 
wavelength for small U is implied in this result. The thermal velocity cut-off must be 
replaced by the velocity corresponding to a wavelength equal to the oscillation amplitude 
and the lower impact parameter cut-off by the de Broglie wavelength corresponding 
to the oscillation velocity amplitude ; that is, in the symbols of the previous paper, 

h m o  I = - - ,  h W 2  
UT = - 

eE0 eE0 

Hence using equations (P34)  and ( P 3 6 )  we obtain 

64nwpZ2e3 iln ( e2 E' ) } 2  

E3c m h o 3  
rs= - 

which considering the nature of the cut-offs implied above must be considered to be 
satisfactory agreement. 

In cases where U is not small compared with uo,  the integrals are now no longer 
independent of the cut-offs used for the asymptotic expansion of the Bessel functions, 
and calculations based on this method must be considered of dubious accuracy. The 
classical method is therefore to be preferred in this case. In the limit of U >> uo,  with 
y >> 1 (ie mug >> ha) ,  the integral is dominated by the region cos 8 - 1 in the denominator 
of the integrand, and the small argument expansion of the Bessel function should be 
used, leading to equation (34).  Thus, if U >> uo,  equation (34)  yields the cross section 
for the absorption independent of the value of y. This removes an apparent contradiction 
between the work of Bunkin and Federov and the classical theory, and can be seen to be 
due to the neglect of the limit U << wo for equations ( 4 2 H 4 4 )  ((B15HB17)). 
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6. Conclusions 

A general expression for the absorption and stimulated bremsstahlung cross sections of 
a nonrelativistic electron has been derived from time-dependent perturbation theory ; 
that is, the Born approximation. The result is general and may be applied to collisions 
with any system which is left unchanged by the interaction. The method has been used 
here to consider collisions with both atoms and ions. 

Inverse bremsstrahlung in large radiation fields has been previously considered by 
two distinct approaches : the Born approximation and the classical theory. However: 
comparison of the results from different papers reveals significant differences between 
these methods. In this paper we have shown the relation of the classical theory to the 
quantum calculation, and shown it to be valid in the following cases : 

+mu: >> ho 

and 

*mu; << hw << +mu2 (51) 

the latter being Raizer’s formula (Zel’dovich and Raizer 1965). 
In addition, asymptotic expressions for the cross section in electron-ion collisions 

are derived, correcting a number of numerical errors in previous work to obtain better 
agreement between the calculations of Bunkin and Federov (1966) and Rand (1964), 
and to remove an apparent contradiction between the classical and the quantum theories 
in the extreme classical limit : +mu2 >> +mu: >> h a ,  suggested in the work of Bunkin and 
Federov (1966). 

It should be noted that, despite the general validity of the results obtained here, 
their use is severely restricted by computational problems arising from the Bessel 
functions. In most practical cases of interest the classical conditions (51) are obeyed, 
and the classical method provides a much simpler means of calculating the absorption 
coefficient . 

Appendix 1. Derivation of equation (16) by Rand’s method 

The Rand (1964) method transforms from the laboratory frame in which the ion is 
stationary and the electron oscillates classically to one in which the electron has only 
its thermal velocity and the ion oscillates. The energy transfer to the electron is then 
calculated from the energy lost by the ion due to the electron-ion interaction force. 
Or transforming back into the laboratory frame it is this energy change in the electron 
which is identified as the energy absorbed from the radiation field. 

In the oscillating frame the electrostatic potential is given by 

V2$ = 4nel$I2 --4nqS(t, r )  (RI) 
where $ is the electron wavefunction and qS(t , r )  the ion charge distribution. The 
electron wavefunction satisfies Schrodinger’s equation : 

ih$ = H,$ - e+‘$. (R2) 

Let us consider the nature of the potential 4‘. If we use the potential +, given by equa- 
tion (Rl), there is a contribution to the total Hamiltonian from the electrostatic interaction 
of the electron with itself, which should not be included. To avoid all self-interaction 
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effects 4' must be taken as the potential due to the ion alone. Rand, however, includes 
a contribution due to the perturbed electron distribution only, arguing that this intro- 
duces collective behaviour necessary for the propagation of longitudinal waves. Although 
on a statistical basis it may be argued that this allows the inclusion of collective effects 
in a cloud of electrons of constant velocity by the appropriate normalization condition, 
it is certainly not necessary in the consideration of binary collisions between an electron 
and an ion. It should be noted that, since Rand's result does not contain the plasma 
frequency, it does not treat collective effects properly, and also that his longitudinal 
waves are not necessary for the transfer of energy from the ion to the electron, as the 
energy transfer may take place due solely to the electrostatic field of the oscillating ion. 
We therefore put 

V24'  = -471qS(t, v) .  (RI') 

The calculation may be performed in an identical manner to Rand. Using (R4), 
(R8), (R15), (R16), (R17), (R18) and (R19), we obtain the energy absorbed by the system 
per unit time : 

h e 2  U = - -  iq20 f n s  J;(k.v , ) (  l-m[{E(po+hk)-E(po)-nhw}-'  
n2 n = l  

+ { E @ ,  - hk) - E(p,) + nhw} - ' 1  1:: -. 

To evaluate this integral we note that U must be real and that Im(l/x) = + d ( x ) .  
Although the sign is not defined, from causality arguments we obtain 

4n2e2 
k2L3 Im d(S2, k )  = -[6{E(po + hk) - E(po) - nhw} - 6{E(p,  - hk) - E(p,)+ nho}] .  (R23) 

We are now in a position to compare this equation with those obtained directly 
from the Born approximation, namely equations (16) and (27). 

Consider the first term of equation (R23) only. The delta function expresses the 
conservation of energy between the incoming and outgoing electron with energy gain 
nho. Thus 

hk = p'-p 

k 2  = 2lpI2A( F-COS A2+1 
6) 

and 

eE p-p' 
k , r ,  = 

1 eEp 
hw mw 

- - --{cosO,(1-AcosO)-AsinOOsinOcos~}. 

Similarly the second term in (R23) corresponds to an energy loss of nho. Thus 
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where 

871q2e2hwpn 1 J,2y{cos B0( l  -].cos 0)-2 sin 0, sin 0 cos 4 )  
{(P+ 1)/2i-COS e}* 0" = dR- 

m2u3 I" 

which is identical to the value given by equations (16) and (27) in the present paper. 

Appendix 2. The classical approximation from Rand's theory 

Rand has shown that for electron-ion scattering the total absorption cross section is 
approximately 

This result may be immediately interpreted in terms of the classical model. For electron- 
ion interactions the momentum-transfer cross section is given by (Sutton and Sherman 
1965, p 143) 

Thus (R39) reduces to 

cEZo  
~ = m p ( u .  wwo,(w)) 

871 

which is the energy gain per electron per second, and which may be recognized as 
equation (P12) of (Pert 1972). The appropriate cut-offs have been discussed elsewhere 
(Rand 1964, Babuel-Peyrissac 1970, Pert 1972). 

This calculation formally demonstrates the derivation of the classical formula from 
the Born approximation for electron-ion collisions, since equations (R17) and (16) 
are equivalent. The extension to arbitrary scattering potentials V(v)  is obvious. 
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